
CHAPTER OBJECTIVES

• Derive Superposition Theorem from the
property of linearity of elements.

• Explain the two key theorems – Superposition
Theorem and Substitution Theorem in detail.

• Derive other theorems like Compensation
Theorem, Thevenin’s Theorem, Norton’s
Theorem, Reciprocity Theorem and Maximum
Power Transfer Theorem from these two key
principles.

• Provide illustrations for applications of
circuit theorems in circuit analysis through
solved examples.

• Emphasise the use of Compensation
Theorem, Thevenin’s Theorem and Norton’s
Theorem in circuits containing dependent
sources as a pointer to their applications in
the study of Electronic Circuits.

5

Circuit Theorems

INTRODUCTION

The previous chapter showed that:

(1) All the element voltages and element currents in a circuit can be obtained from

its node voltages. The node voltages are governed by a matrix equation

YV � CU, where V is the node voltage column vector, Y is the nodal

conductance matrix of the circuit, U is the input column vector containing

source functions of all independent voltage sources and current sources in the

circuit and C is the input matrix. The values of conductances in the circuit and

values of coefficients of linear dependent sources in the circuit decide the

elements of Y-matrix. It is a symmetric matrix if there are no dependent

sources in the circuit. Dependent sources can make Y-matrix asymmetric.

The C-matrix, in general, contain 0, 1, �1 and conductance values as well as

dependent source coefficients.

(2) An alternative formulation is given by a matrix equation ZI� DU, where I is

the mesh current column vector, Z is the mesh resistance matrix of the circuit, 

This Chapter identifies the Substitution Theorem and Superposition Theorem as the two
key theorems and shows how the other theorems may be extracted from them.
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L
i1

and L
i2

represent the internal inductance of the sources, C
i1

and C
i2

represent the

terminal capacitance of the sources and R
i1

and R
i2

represent the internal resistance of the

sources. L
c

and R
c

represent the inductance and resistance of the connecting wires.

Obviously, two practical voltage sources can be connected in parallel even if their open-

circuit electromotive forces (e.m.f.s) are not equal at all t; only that they cannot be modelled

by ideal independent voltage source model.
Two ideal independent current sources in series raise a similar issue (see Fig. 2.3-3).

KCL requires that i
s1

(t) = i
s2

(t) for all t. Even if this condition is satisfied, there is no way to

obtain the voltages appearing across the current sources. Therefore, the correct model to be

employed for practical current sources that appear in series in a circuit is a detailed model

that takes into account the parasitic elements associated with any practical device. More

generally, if there is a node in a circuit where only current sources are connected, then, those

current sources cannot be modelled by ideal independent current source model.
Similar situations may arise in modelling practical dependent sources by ideal

dependent source models. In all such cases we have to make the model more detailed in order

to resolve the conflict that arises between Kirchhoff’s laws and ideal nature of the model.

2.4 ANALYSIS OF A SINGLE-LOOP CIRCUIT

The circuit analysis problem involves finding the voltage variable and current variable of

every element as functions of time, given the source functions. Source functions are the

time-functions describing the e.m.f. of independent voltage sources and source  currents of

independent current sources. They are also called the excitation functions. If the circuit

 contains b-elements, there will be 2b variables to be solved for. Some of them will be known

in the form of source functions, while others have to be solved for.

Element relation of each element gives us one equation per element. Thus, there are

b equations arising out of element relations. The remaining b equations are provided by the

interconnection constraints. These equations are obtained by applying KCL at all nodes

except one and KVL in all meshes (in the case of a planar circuit).

Theoretically speaking, that is all there is to circuit analysis. However, systematic

procedures for applying element relations, KVL equations and KCL equations would be highly

desirable when it comes to analysis of complex circuits. Moreover, the fact that there are 

2n � 2 KCL equations for an n-node circuit and only (n � 1) of them are independent, calls for

a systematic procedure for writing KCL equations. Similarly, there will be l KVL equations for

a circuit with l-loops and only (b � n � 1) of them will be independent. This,  again, calls

for some systematic procedures for extracting a set of (b � n � 1) independent KVL equations.

552.3 INTERCONNECTIONS OF IDEAL SOURCES
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Fig. 2.3-2 A Detailed Model for a Circuit with Two Voltage Sources in
Parallel

is1(f) is2(f)

Fig. 2.3-3 Two Ideal
Independent Current
Sources in Series with 
Another Element

Thus, the only correct way to model a circuit that involves parallel connections 

of voltage sources (more generally, loops comprising only voltage sources) is to take

into account the parasitic elements that are invariably associated with any practical voltage

source. A somewhat detailed model for the two-source system is shown in Fig. 2.3-2.

interesting source functions – unit impulse function �(t) and unit step function u(t). These

functions are extremely important in Circuit Analysis.

3.1 THE RESISTOR

The physical basis for the two-terminal element, called resistor, was dealt in detail in 

Chap. 1. We revise briefly.

The source of e.m.f. in a circuit sets up charge distributions at the terminals of all the

two-terminal elements connected in the circuit. This charge distribution at the terminals of

a resistor sets up an electric field inside the conducting material in the resistor. The mobile

electrons get accelerated by this electric field and move. But, their motion is impeded by

frequent collisions with non-mobile atoms in the conducting substance. A steady situation

in which the mobile electrons attain a constant average speed as a result of the aggregate

effect of large number of collisions occur in the conducting material within a short time

(called relaxation time of the conductor material in Electromagnetic Field Theory) of

appearance of electric field. Once this steady situation occurs, the current through a linear
resistor is proportional to the voltage appearing across it. The constant of proportionality is

called ‘resistance’ of the resistor and has ‘Ohm’ (represented by ‘Ω’) as its unit. Reciprocal

of resistance is called ‘conductance’ of the resistor and its unit is ‘Siemens’ (represented by

‘S’). The unit ‘mho’ is also used sometimes for conductance. The unit ‘mho’ is represented

by inverted ‘Ω’ – i.e., by .

Ohm’s Law, an experimental law describing the relationship between voltage across a

resistor and current through it, states that the voltage across a linear resistor at any instant t is

proportional to the current passing through it at that instant provided the temperature of the

resistor is kept constant. A resistor is called linear if it obeys Ohm’s law. This is a kind of cir-

cular definition. We settle the matter by stating that we consider only those resistors that have

a proportionality relationship between voltage and current in our study of circuits in this book.

The graphic symbol of a linear resistor and its element relationship is given below.

v(t) = Ri(t) or i(t) = Gv(t) for all t

where p(t) is the power delivered to the resistor in Watts.

The resistor does not remember what was done to it previously. Its current response

at a particular instant depends only on the voltage applied across at that instant. Therefore,

a resistor is a memoryless element. Such an element needs to have same kind of wave-shape

in both voltage and current. It is not capable of changing the wave-shape of a signal applied

to it. It can only dissipate energy. Therefore, the power delivered to a positive resistor is

always positive or zero.

3.1.1 Series Connection of Resistors

Consider the series connection of n resistors R
1
, R

2
,…, Rn as in Fig. 3.1-1.
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Voltage–current
relation and power
relations for a linear

resistor obeying
Ohm’s Law.
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Fig. 3.1-1 Series Connection of Resistors and its Equivalent
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headings and sub-headings to guide
the reader through and provide a
lucid flow of the topic.

Circuits: Topics presented
withclear circuits supported by
analytical and conceptual ideas.
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and ai is its “coefficient of contribution”. The coefficient of contribution has the physical
significance of contribution per unit input’.

The coefficient of contribution, ai, which is a constant for a time-invariant circuit, can

be obtained by solving for x(t) in a single-source circuit in which all independent sources

other than the i th one are deactivated by replacing independent voltage sources with short-

circuits and independent current sources with open-circuits.

But, why should a linear combination x � a
1
I

1
� a

2
I

2
� . . . � b

1
V

1
� b

2
V

2
� . . . be

found term by term always? Is it possible to get it in subsets that contain more than one

term? The third form of Superposition Theorem states that it can be done.

Superposition Theorem Form-3

‘The response of any circuit variable in a multi-source linear memoryless circuit containing
“n” independent sources can be obtained by adding responses of the same circuit variable
in two or more circuits with each circuit keeping a subset of independent sources active in
it and remaining sources deactivated such that there is no overlap between such active
source subsets among them’.

5.1.1 Linearity of a Circuit

Why did the memoryless circuits we have been dealing with till now obey superposition

principle? The elements of memoryless circuits were constrained to be linear time-invariant

elements. We used only linear resistors and linear dependent sources. The v–i relations of

all those elements obey superposition principle. As a result, all KCL and KVL equations

in nodal analysis and mesh analysis had the form of linear combinations. Such KVL and

KCL equations lead to nodal conductance matrix (and mesh resistance matrix) that contain

only constants in the case of a time-invariant circuit (i.e., resistances are constants and

coefficients of dependent sources are also constants). Similarly, the input matrix (C in

nodal analysis and D in mesh analysis) will contain only constants in the case of circuits

constructed using linear time-invariant elements. Thus, the solution for node voltage

variables and mesh current variables will come out in the form of linear combination of

independent source functions. And, after all Superposition Theorem is only a restatement

of this fact. Therefore, Superposition Theorem holds in the circuit since we used only linear

elements in constructing it except for independent sources which are non-linear. Hence, we

conclude that a memoryless circuit constructed from a set of linear resistors, linear
dependent sources and independent sources (they are non-linear elements) results in a
circuit which obeys Superposition Theorem and hence, by definition, is a linear circuit.

Linearity of a circuit element and linearity of a circuit are two different concepts.
An element is linear if its v–i relationship obeys principle of homogeneity and principle of

additivity. A circuit is linear, if all circuit variables in it, without any exception, obey

principle of homogeneity and principle of additivity, i.e., the principle of superposition. It

may appear intuitively obvious that a circuit containing only linear elements will turn out

to be a linear circuit. But, note that we used non-linear elements – independent sources are

non-linear elements – and hence, it is not so apparent. The preceding discussion offers a

plausibility reasoning to convince us that a circuit containing linear elements and

independent sources will indeed be a linear circuit. But the mathematical proof for this

apparently straightforward conclusion is somewhat formidable.

Linearity and Superposition appear so natural to us. But the fact is that most of the

practical electrical and electronic circuits are non-linear in nature. Linearity, at best, is only

an approximation that circuit analysts employ to make the analysis problem more tractable.

We illustrate why Superposition Theorem does not hold for a circuit containing a non-linear

element by an example. The circuit is shown in Fig. 5.1-3(a). The resistor R is a non-linear

one with a v–i relation given by v � 2i2 for i � 0 and �2i2 for i � 0.

1655.1 LINEARITY OF A CIRCUIT AND SUPERPOSITION THEOREM

Superposition
Theorem – Third form.

Linearity of a Circuit
Linearity of a circuit

element and linearity 
of a circuit are two
different concepts.

A circuit is called
linear if its solution
obeys superposition
principle. This is why we
stated the Superposition
Theorem with the
adjective linear behind
‘circuit’. Whether we
view the statements on
Superposition Theorem
as a definition of
linearity of a circuit or as
an assertion of an
important property of
linear circuits is matter
of viewpoint.

There is indeed a bit
of circularity in Linearity
and Superposition
Principle.
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Fig. 5.1-3 (a) A Circuit
Containing a Non-
linear Resistor (b)
Circuit Solution for
V � 1 V and I � 1 A

part of the circuit that is being substituted and the remaining circuit except through the pair
of terminals at which they are interconnected.

Subject to the constraints on unique solution and interaction only through the
connecting terminals, we state the Substitution theorem as below (Fig. 5.3-8).

Let a circuit with unique solution be represented as interconnection of two networks
N

1
and N

2
and let the interaction between N

1
and N

2
be only through the two terminals at

which they are connected. N
1

and N
2

may be linear or non-linear. Let v(t) be the voltage that
appears at the terminals between N

1
and N

2
and let i(t) be the current flowing into N

2
from

N
1
. Then, the network N

2
may be replaced by an independent current source of value i(t)

connected across the output of N
1

or an independent voltage source of value v(t) connected
across the output of N

1
without affecting any voltage or current variable within N

1
provided

the resulting network has unique solution.

176 5 CIRCUIT THEOREMS

But, what is the use
of a theorem that wants
us to solve a circuit first
and then replace part
of the circuit by a source
that has a value
depending on the
solution of the circuit?
Obviously, such a
theorem will not help us
directly in solving circuits.

The significance of
this theorem lies in the
fact that it can be used
to construct theoretical
arguments that lead to
other powerful circuit
theorems that indeed
help us to solve circuit
analysis problems in an
elegant and efficient
manner.

Moreover, it does
find application in
circuit analysis in a
slightly disguised form.
We take up that
disguised form of
Substitution Theorem in
Sect. 5.4.

5.4 COMPENSATION THEOREM 

The circuit in Fig. 5.4-1(a) has a resistor marked as R. It has a nominal value of 2 Ω. Mesh

analysis was carried out to find the current in this resistor and the current was found to be

1 A as marked in the circuit as in Fig. 5.4-1(a).

Now, let us assume that the resistor value changes by ΔR to R�ΔR. Correspondingly

all circuit variables change by small quantities as shown in Fig. 5.4-1(b). The current

through that resistor will also change to i�Δi. We can conduct a mesh analysis once again

and get a new solution. However, we can do better than that. We can work out changes in

variables everywhere by solving a single-source circuit and then construct the circuit

solution by adding change to the initial solution value.

We apply Substitution theorem on the first circuit with R as the element that is being

substituted and on the second circuit with R�ΔR as the part that is being substituted by an

independent voltage source. The voltage source in the first circuit must be Ri V and the

voltage source in the second circuit must be (R � ΔR)(i � Δi) V.

(R � ΔR)(i � Δi) � Ri � (R � ΔR)Δi � iΔR (Fig. 5.4-2).
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Fig. 5.3-8 The Substitution Theorem
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3.5 A

(a)

5 V

5.5 A

+

–

i = 1 A

R
2 Ω

2 Ω 2 Ω
2 Ω

2 Ω

3.5 A

(b)

5 V

5.5 A

+

–

i + Δi
R + ΔR2 Ω 2 Ω 2 Ω

2 Ω

Fig. 5.4-1 Circuit to
Illustrate Compensation
Theorem
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significant discussions in the text to
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2196.8 EFFECT OF NON-IDEAL PROPERTIES OF OPAMP ON CIRCUIT PERFORMANCE
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Fig. 6.8-1 (a) Non-
Inverting Amplifier (b)
Equivalent Circuit of
Non-Inverting
Amplifier

We solve the problem by finding the node voltage vx first. We express vd as 
vS – vx and write the node equation at the node where vx is assigned.

Solving for vx,

Substituting the numerical values, we get, vx � 0.9999 vS. Therefore, vd � 0.0001 vs.
The current in Ro is 100000vd – 0.9999vS divided by 900075 Ω. Therefore, it is equal

to 9.9993 � 10�6vS A.
Therefore, the voltage drop in Ro � 75 � 9.9993 � 10–6vS V � 7.5 � 10�4 vS V.
∴ vo � 10vS � 7.5 � 10�4 vS ≈ 10 vS V. This is the same as the output predicted by

the IOA model.
Let us repeat the calculations by assuming A � 1000, Ri � 200 kΩ and Ro � 1 kΩ.

Now, the node voltage vx � 0.9901vS, the differential input voltage vd � 0.0099vs and
vo � 9.86vo. Thus, the gain will deviate by 1.4% away from its expected value of 10.

In general, the results predicted by the IOA model will be sufficiently accurate
if the gain realised in the circuit is below 1% of the Opamp gain and the resistors used
in the circuit are much higher than the Opamp output resistance and much lower than
the Opamp input resistance.

A thumb rule for choosing the resistor values in a circuit containing Opamps and
resistors may be arrived at as a result of these calculations on commonly used Opamp
circuits.

The design rule for choosing the values for resistors in an Opamp circuit is that all
resistors must be chosen to lie between Ri/25 and 25Ro, where Ri and Ro are the input and
output resistance of Opamps used in the circuit.

Voltage saturation at the output of an Opamp and the consequent clipping of
output waveform are easy to understand. However, clipping at a level lower than the
voltage saturation limit may take place under current-limited operation of Opamps.
The next example illustrates this issue.

v R
A

R R

R R
A

R R
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i

i

s=
+

+

+ +
+( )

+

1

1 1 1
2 0

1 2 0

.

1 1 1 0
1 2 0R

v v
R

v
R R

v A v v
i

x s x x s x−( ) + +
+

− −( )( ) =

The Opamp used in an inverting amplifier (Fig. 6.8-2) employs �12 V supply. The output
saturation limit of the Opamp at this power supply level is �10 V. The output current of
Opamp is limited to �20 mA with a supply voltage of �12 V. The feedback resistance
draws negligible current from the output and the gain of the amplifier is –10. Obtain the
output of the amplifier if the input is a sine wave of 1 V amplitude and 10 Hz frequency
and the load connected at the output is (i) 10 kΩ and (ii) 250 Ω.

SOLUTION
(i) The gain of the amplifier is –10. The input is vS(t) � 1 sin20πt V. Therefore, the output will
be vo(t) � –10sin20πt V if the Opamp does not enter the non-linear range of operation
at any instant. The peak voltage of the expected output is 10 V and this is just about
equal to the voltage saturation limits. Therefore, clipping will not take place on this
count. The maximum current that will be drawn by the 10 kΩ load will be 10 V/10 
kΩ � 1 mA and that is well below the output current limit of Opamp. Therefore, the
output in this case will be a pure sine wave given by vo(t) � –10sin20πt V.

(ii) Clipping cannot take place in this case too due to the output voltage trying to
exceed the saturation limits. However, if the output is really –10sin20πt V, then the load resis-
tor will draw a current of 10/0.25 � 40 mA at the peak of sine wave, but the Opamp output
current is limited at � 20 mA. The load resistor of 250 Ω will draw 20 mA when the voltage
across it is 5 V. This will happen at the 30° position on the sine wave. Thus, the output voltage
will follow a sinusoid of 10 V amplitude until the 30° position, then, remain clipped at 5 V for
the entire 30º to 150º range and again follows a sinusoidal variation for 150° to 180° in a 
half-cycle. Thus, output shows a clipping level of �5 V for two-thirds of cycle period.

EXAMPLE: 6.8-2

+ R
VS RL

VO

10 R

– +
+

–

Fig. 6.8-2 The Inverting
Amplifier in Example
6.8-2

We may recast the expressions that involve sum of the two sinusoidal functions in

Eqn. 11.6-8 and 11.6-9 as single sinusoidal functions by employing trigonometric identities

in the following manner.

(11.6-10)

These waveforms are shown in Fig. 11.6-5 for L � 1 H, C � 1 F, V
0
� 2 V and 

I
0
� 1 A.

where φ =
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

−tan .1
0

0

I L
C

V

i t I
CI
L

t tn( ) sin( ) ,= − + − ≥ +
0

2 0

2

0ω φ A for 

v t V
LI
C

t tnC V for ( ) cos( )= + − ≥ +
0

2 0

2

0ω φ

The initial voltage of 2 V across the capacitor appears across the inductor at t� 0+

with a polarity such that the inductor current starts decreasing at the rate of 2 V/1 H � 2 A/s

from its initial value of 1 A. However, the circuit current is in a direction suitable for increas-

ing the capacitor voltage. Hence, the capacitor voltage increases while the inductor current

decreases. Under the action of increasing reverse voltage, the inductor current decreases

more rapidly to reach zero at the instant t
1
. At that instant, the current and hence the energy

storage in inductor are zero. The inductor had an initial energy of 0.5 J and the capacitor had

an initial energy of 2 J. There was no dissipation in the circuit. Therefore, when the circuit

current reaches zero, the capacitor must hold the total initial energy of 2.5 J in it. It will

require √5 V across it (since C � 1 F and energy � 0.5CV2). Equation 11.6-10 predicts

exactly this value as the amplitude of v
C
(t). When circuit current goes through zero, capacitor

voltage must go through a positive or negative peak due to two reasons – firstly, the current

through a capacitor is proportional to the rate of change of voltage across it and secondly

that is the instant at which it will contain the maximum possible energy equal to the total

initial energy. Therefore, v
C
(t) reaches a positive peak at t

1
.

With such a large reverse voltage across it, the inductor has to continue its current

build up in the negative direction. But, with the current changing its direction, the capacitor

44511.6 THE SERIES RLC CIRCUIT – ZERO-INPUT RESPONSE

The source-free
response (equivalently,
the zero-input response)
of a pure LC circuit will
contain undying
sinusoids with steady
amplitudes. The
amplitude of sinusoidal
waveforms is decided
by the total initial
energy storage in the
circuit and the circuit
parameters.

Circuit parameters,
i.e., L and C decide the
angular frequency of
oscillations too – it is
(LC)–0.5 rad/s.
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Fig. 11.6-5 Zero-Input Response of a LC Circuit (L� 1 H, C� 1 F, V0 � 2 V
and I0 � 1 A)

Source-free
response equations
for a pure LC circuit.

A Pure LC Circuit?
Strictly speaking, a

pure LC circuit cannot
exist in practice. The
wire used to construct
the inductor, the metal
foil used in the
capacitor and the
connecting wires have
non-zero resistance. The
dielectric used in the
capacitor will have
non-zero conductivity.
Thus, there will be some
non-zero resistance left
in any LC circuit.

continued

Graphical representations:
Graphical representations for
figurative analysis of circuit
behaviour.

Worked examples: Worked
examples illustrate the theory
explained in the text.

TOC:ECN  6/12/2008  10:14 AM  Page x



1113.9 QUESTIONS

• A large capacitor can absorb alternating currents in a circuit

without contributing significant amount of alternating voltages

in the circuit.

• The total energy delivered to a capacitor carrying a voltage V

across it is ( )CV2 J and this energy is stored in its electric 

field. Stored energy in a capacitor is also given by ( C)Q2 J 

and QV/2 J. The capacitor will be able to deliver this stored

energy back to other elements in the circuit if called upon to 

do so.

• A single capacitor C
eq

can replace a set of n capacitors

connected in series as far as changes in charge, changes in
voltage and changes in total stored energy are concerned.

• A single capacitor C
eq

� C
1
� C

2
�…� Cn can replace a set

of n capacitors connected in parallel. The total charge, total

current and total stored energy are shared by the various

capacitors in direct proportion to capacitance value in a par-

allel connection of capacitors.

1

2

1

2

1 1 1 1

1 2C C C Cneq

= + + +
⎡

⎣
⎢

⎤

⎦
⎥. . .

[Passive sign convention is assumed throughout]

1. What is meant by linearity of an electrical element? Show that

a resistor satisfying Ohm’s law is a linear element.

2. What are series equivalent and parallel equivalent of n equal

resistors?

3. Show that a resistor in parallel with a short-circuit is a 

short-circuit.

4. Show that a resistor in series with an open-circuit is an 

open-circuit.

5. Show that the parallel equivalent of a set of resistors will be

less than the resistor with the least value among them.

6. How many different values of resistance can be obtained by

using five resistors of equal value in series–parallel

combinations? Enumerate them.

7. Explain why an inductor needs an initial condition

specification whereas a resistor does not.

8. The voltage across a 0.1 H inductor is seen to be 7.5 V at 

t � 7 ms. What is the current in the inductor at that instant?

9. The voltage across a 0.1 H inductor is seen to be a constant at

10 V between 10 ms and 15 ms. The current through the induc-

tor was 0.3 A at 12 ms. What is the current at 13.5 ms?

10. The area under voltage waveform applied to a 10 mH  inductor

is 5 mV-s between 7 ms and 9 ms. If the current at 7  ms was 1

A how much is it at 9 ms?

11. An inductor of 0.2 H has current of 2 A at t � 0– in it. The volt-

age applied across it is 3�(t – 2). Find the current in it 

(a) at 1 s (b) at 3 s.

12. An inductor of 2 H undergoes a flux linkage change of 

7 Wb-T between 15 s and 17 s. What is the average voltage

applied to the inductor during that interval?

13. Two identical inductors L
1

and L
2

undergo a flux linkage

change by 10 Wb-T. L
1

takes 2 s for this change and L
2 
takes

20 s. What is the ratio of average voltage applied to the induc-

tors during the relevant intervals?

14. A 10 H has an initial energy equivalent to the energy consumed

by a 40 W lamp in 1 h. Find the initial current in the inductor.

15. A DC voltage source of 24 V is switched on to an initially

relaxed inductor of 4 H through a 48 A fuse. Assume that the

fuse acts instantaneously when current through it touches 48 A.

How much time do we have to open the switch before the fuse

blows?

16. A DC source of 12 V is switched on to an inductor of 0.5 H

at t � 0. The current in it is found to be 0 A at 5 s. Was there

any initial stored energy in the inductor? If yes, 

how much?

17. A symmetric triangular voltage waveform with a peak-to-peak

value of 20 V and frequency 1 kHz is applied to an 

inductor from 0 s onwards. The inductor was carrying an initial

current of 10 A. The inductor current is found to vary

within �3% of its initial current subsequently. What is the

value of inductance?

18. Two inductors of 1 H and 1.8 H with initial currents of 

5 A and 2 A, respectively are connected in parallel. How much

energy can be taken out from this parallel combination?

19. Three inductors are connected in series and the current in the

circuit is found to vary at the rate of 7 A/s at an instant when

the applied voltage was at 14 V. The value of voltage  measured

across the third inductor at the same instant was 

4 V. What is the value of the third inductor?

20. Two inductors with zero initial energy were paralleled at 

t � 0 and a voltage source was applied across them. The rate

of change of source current at 2 s is 5 A/s and the source

voltage at that time was 2.5 V. It was also found that the first

inductor had a stored energy that is twice that of the second

inductor. Find the inductance values.

21. How much time is required to charge a 10 mF capacitor with

an initial voltage of –100 V to �100 V using a DC current

source of value 10 mA?

22. The voltage rating of a 10 �F capacitor is 100 V. It is being

charged by a 100 �A pulse current source. Its initial voltage

was –75 V. What is the maximum pulse width that the  current

source can have if we do not want to end up with a blown

capacitor?

23. The DC power supply in a PC uses 470 �F capacitor across its

DC output. The DC output value is normally 320 V. The PC

can function without rebooting till the DC voltage across falls

3.9 QUESTIONS

Thus, n ideal independent voltage sources of voltage values V
1
, V

2
, . . . Vn each in

series with a resistance, delivering power to a common load in parallel, can be replaced by
a single ideal independent voltage source in series with a resistance. The value of voltage
source is given by,

where Gi � for i � 1 to n. 

This is known as Millman’s Theorem. Millman’s theorem is only a restatement of

Source Transformation Theorem that is valid under a special context.
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5.10 SUMMARY

• This chapter dealt with some circuit theorems that form an

indispensable tool set in circuit analysis. Many of them were

stated for linear time-invariant memoryless circuits. However,

they are of wider applicability and will be extended to circuits

containing inductors, capacitors and mutually coupled

inductors in later chapters.

• Superposition theorem is applicable only to linear circuits. It

states that ‘the response of any circuit variable in a multi-

source linear memoryless circuit containing n independent

sources can be obtained by adding the responses of the same

circuit variable in n single-source circuits with ith single-source

circuit formed by keeping only ith independent source active

and all the remaining independent sources deactivated’.

• A more general form of Superposition Theorem states that ‘the

response of any circuit variable in a multi-source linear
memoryless circuit containing n independent sources can be

obtained by adding responses of the same circuit variable in

two or more circuits with each circuit keeping a subset of

independent sources active in it and remaining sources

deactivated such that there is no overlap between such active

source-subsets among them’.

• Substitution theorem is applicable to any circuit satisfying

certain stated constraints. Let a circuit with unique solution

be represented as interconnection of the two networks N
1

and

N
2

and let the interaction between N
1

and N
2

be only through

the two terminals at which they are connected. N
1

and N
2

may be linear or non-linear. Let v(t) be the voltage that

appears at the terminals between N
1

and N
2

and let i(t) be the

current flowing into N
2

from N
1
. Then, the network N

2
may be

replaced by an independent current source of value i(t)
connected across the output of N

1
or an independent voltage

source of value v(t) connected across the output of N
1

without

affecting any voltage or current variable within N
1

provided

the resulting network has unique solution.

• Compensation theorem is applicable to linear circuits and

states that ‘in a linear memoryless circuit, the change in circuit

variables due to change in one resistor value from R to R�ΔR
in the circuit can be obtained by solving a single-source circuit

analysis problem with an independent voltage source of value

iΔR in series with R�ΔR, where i is the current flowing

through the resistor before its value changed’.

• Thevenin’s and Norton’s Theorems are applicable to linear

circuits. Let a network with unique solution be represented as

interconnection of the two networks N
1

and N
2

and let the

interaction between N
1

and N
2

be only through the two

terminals at which they are connected. N
1

is linear and N
2

may

be linear or non-linear. Then, the network N
1

may be replaced

by an independent voltage source of value v
oc

(t) in series with

a resistance R
o
without affecting any voltage or current variable

within N
2

provided the resulting network has unique solution.

v
oc

(t) is the voltage that will appear across the terminals when

they are kept open and R
o

is the equivalent resistance of the

deactivated circuit (‘dead’ circuit) seen from the terminals. This

equivalent circuit for N
1

is called its Thevenin’s equivalent.

• Let a network with unique solution be represented as

interconnection of the two networks N
1

and N
2

and let the

interaction between N
1

and N
2

be only through the two

terminals at which they are connected. N
1

is linear and N
2

may

be linear or non-linear. Then, the network N
1

may be replaced

by an independent current source of value i
SC

(t) in parallel with

a resistance R
o
without affecting any voltage or current variable

within N
2

provided the resulting network has unique solution.

i
SC

(t) is the current that will flow out into the short-circuit put

across the terminals and R
o

is the equivalent resistance of the

deactivated circuit (‘dead’ circuit) seen from the terminals. This

equivalent circuit for N
1

is called its Norton’s equivalent.

• Reciprocity theorem is applicable to linear time-invariant

circuits with no dependent sources.

Bulleted Summary: Bulleted
Summary gives the essence of each
chapter in brief.

Review Questions: Review
exercise questions help the reader to
check the understanding of the
topic.
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A
AC steady-state frequency response, 399 

(Also see Sinusoidal steady-state
frequency response)

Ampere, 11
Amplifiers, 198

buffer amplifier, 194
common base amplifier, 194
differential amplifier, 193
features of ideal amplifiers, 198
ground in, 199
Ideal, 198
input equivalent of, 198
instrumentation, 213
inverting Summer, 211
inverting, 210
large signal operation, 203
linear amplification in, 200
non-inverting Summer, 211
non-inverting, 210
output equivalent of, 198
output limits in, 203
RC-coupled common emitter amplifier, 182
RC-coupled, 435
role of DC supply in, 199
signal bypassing in, 437
signal-coupling in, 435
subtracting, 212
tuned amplifier, 481
unity gain, 194, 423, 424, 498

Aperiodic waveform, 570
Fourier transform of, 572, 575

Attenuators, 729
Averaging circuit, 433, 470

B
Band-limiting, 605
Band-pass filter, 611, 649, 665, 670

Constant-k, 725
half-power frequencies, 468
narrow band-pass, 464, 473, 481

Band-reject function, 666, 728
Buck converter, 413

C
Capacitive compensation, 284
Capacitor, 99

as a signal-bypassing element, 437

as a signal-coupling element, 435
charge storage in, 99
Effective Series Resistance (ESR) of, 552
energy storage in, 101
initial condition, 100
linearity of, 101
parallel connection of, 108
quality factor (Q) of, 469
repetitive charging, 421
self-discharge, 417
series connection of, 105
trapped energy in series connection of,

107
v-i relation, 16, 99
voltage, instantaneous change in, 100

Charge, 4
force between charges, 5
surface charge distribution, 9, 12
terminal charge distribution, 15

Circuit 
analysis problem, 120
dynamic, 262, 384, 496, 503
fully constrained, 130, 151
governing differential equation of, 263
linearity of, 162, 165, 384
memoryless, 120, 275
order of a, 506

Circuit element
multi-terminal, 36
two-terminal (SeeTwo-terminal elements)

Circuit matrix, 758
fundamental, 759
rank of, 761

Coefficient of contribution, 164
Compensation theorem, 176
Complex Amplitude, 268, 272, 627

element relations, in terms of, 271
Kirchhoff’s Laws, in terms of, 270

Complex Exponential function, 266, 507, 528,
620, 621

Fourier transform of, 595
Complex frequency, 624
Complex signal space, 507
Conductance, 70
Conduction process, 12
Constant flux-linkage theorem, 672
Constant-k filter, 710

Constant-k low-pass filter, 710, 713
Convolution, 516

graphical interpretation of, 516
Integral, 512, 517, 518

Coupled coils, 302
analysis by Laplace transforms, 667
coupling coefficient, 38, 304
equivalent circuits, 667
sinusoidal steady-state in, 302

Current, 11
active component of, 295, 296
continuity equation for, 50
density, 10
direction of, 11, 27
division principle, 72
intensity, 11
reactive component of, 295, 296
reference direction for, 27

Cut-set matrix, 774, 775
f-cut-set matrix, 777
rank of, 777
relation with circuit matrix, 776

D
DC-DC Chopper, 552
Dependent sources, 39

mesh analysis of circuits with, 152
nodal analysis of circuits with, 134, 137
types of, 39, 120

Differentiator circuit, 566, 652
Dirichlet’s conditions, 536, 578
Discrete spectrum, 546

magnitude, 546
phase, 546
power, 558

Drift velocity, 10
Duality in planar graphs, 772

E
Eigen function, 507, 528, 529, 620
Electric Circuit, 4
Electrical Inertia, 369
Electrical Sources, 24

ideal independent voltage source, 24
Ideal independent current source, 25
Ideal dependent source, 39
Interconnection of, 54

Electromagnetic shielding, 667
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Chapter 1

1. (a) 432,000 Coulombs (b) 11.66 V (c) 88.18 AH (d) 3.76�106 J,

1.045 kWh

2. (a) 28 AH (b) 9 A (c) 2.94�106 J, 0.817 kWh 8.9 A, 71.2 AH

3. (a) 10 AH (b) 60 AH (c) 10 A (d) 2.133 �106 J, 0.593 kWh

4. (a) a 100 Ω resistor (b) 0.36 mC (c) 1 mC (d) 5 mJ (e) 23 ms

5. (a) a 0.1 μF capacitor (b) 1 μC (c) 5 μJ (d) 3.75 μJ

6. (a) a 0.6 H inductor

(b)

(c)

(d)

7. (a) �240 W (b) 120 J , increases

8. It is a resistor of 5 Ω and the current through it is (2 � e�100t) A

for t ≥ 0.

9. (d) 0.85 A

10. (a)

(b)

(c)

11.

12. 9.97 A, 1.994 Wb-T , 9.94 J

13. (b) v
x

� �10 V (c) Yes, it is a DC source.

14. (a) (15 V, �3 A) and (�15 V, 3 A) (b) It is an active element

and is a DC source. (c) No

15. 4 H, 1.98 H

16. 1 H, 0.7 H

17. 1 H, 0.5

18. (a)

(b)

(c)

Chapter 2

1. v
2

� �10 V, v
4

� 15 V, v
5

� �15 V, i
1

� �3 A, i
5

� 2 A

2. (i) v
1

� �15 V, v
5

� 15 V, v
7

� 10 V, i
2

� 3 A, i
3

� �5 A, 

i
4

� �8 A, i
6

� �5 A

(ii) Elements a, e and g (iii) Elements b, c, d and f. 
(iv) Elements b, c, d and f. Total power � 140 W (v) Elements

a, e and g. Power absorbed � �140 W

3. (i) i
2

� � i
3

� i
4

� i
8
; i

1
� i

3
� i

4
� i

7
� i

8
; i

6
� � i

3
� i

7
; 

i
5

� � i
4

� i
3

� i
7

(ii) v
1

� v
3
� v

7
� v

8
; v

2
� �v

3
� v

7
; v

5
� v

4
� v

8
; v

6
� v

3
� v

4

4. (i) The elements are designated as [a // (b�c)] � d �
[(e�f )//g] where // is parallel connection and � is series

 connection. Then, i
c

� �2 A, i
d

� 1 A, i
f
� �2 A, i

g
� 3 A,

v
b

� 5 V, v
d

� �5 V, v
e

� 5 V.

(ii) 3 

(iii) [5 Ω//(2.5 Ω�10 V)] � [�1.5 V] � [3.3333 Ω//

(2.5 Ω�15 V)] where // stands for parallel connection

and � stands for series  connection.

(iv) [5 Ω//(2.5 Ω�2.5 A)] � [1 A] � [3.3333 Ω//(2.5 Ω�2 A)]

where // stands for parallel connection and � stands for

series connection.

5. (i) The elements are designated as [a // (b�c)] � d �
[(e�f)//g] where // is parallel connection and � is series

 connection. Then, i
c

� �2 A, i
d

� 1 A, i
f
� �2 A, 

i
g

� 3 A, v
b

� 5 V, v
d

� �5 V, v
e

� 5 V.

(ii) Power delivered by a(1 A CS) � �5 W, Power delivered by

d(1 A CS) � 5 W, Power delivered by g(3 A CS) � �30 W,

Power delivered by b (5 V VS) � �10 W, Power delivered

by c(10 V VS) � 20 W, Power delivered by e(5 V VS)

� �10 W, Power delivered by f(15 V VS) � 30 W.

6. (i) The elements are designated as [a // b] � c � d � [ e // f ]
where // is parallel connection and � is series connection.

Then, i
b

� 1 A, i
d

� 1 A, i
f
� �3 A, v

b
� �10 V, v

c
� 5 V,

v
f
� 10 V.
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Answers to Selected Problems

Answers to Selected Problems:
Answers to Selected Problems given
at the end of the book facilitate
effortless verification of the solutions
to chapter-end exercises.

Index: An exhaustive list of
index words with sub-entries
captured from all occurences across
the text instead of being restricted to
a given primary entry.
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